early modern science

Renaissance and early modern science

Galen (129–c. 216) noted the optic chiasm is X-shaped. (Engraving from Vesalius, 1543)
Alhazeen disproved Ptolemy's theory of vision,[55] but did not make any corresponding changes to Aristotle's metaphysics. The scientific revolution ran concurrently to a process where elements of Aristotle's metaphysics such as ethics, teleology and formal causality slowly fell out of favour. Scholars slowly came to realize that the universe itself might well be devoid of both purpose and ethical imperatives. Many of the restrictions described by Aristotle and later favoured by the Catholic Church were thus challenged. This development from a physics infused with goals, ethics, and spirit, toward a physics where these elements do not play an integral role, took centuries.
Albrecht Durer (1525) Man drawing a lute, using Perspectivist techniques, as well as Alhazen's technique of taut strings to visualize a light ray.
New developments in optics played a role in the inception of the Renaissance, both by challenging long-held metaphysical ideas on perception, as well as by contributing to the improvement and development of technology such as the camera obscura and the telescope. Before what we now know as the Renaissance started, Roger BaconVitello, and John Peckham each built up a scholastic ontology upon a causal chain beginning with sensation, perception, and finally apperception of the individual and universal forms of Aristotle.[56] A model of vision later known as perspectivism was exploited and studied by the artists of the Renaissance. This theory utilizes only three of Aristotle's four causes: formal, material, and final.[57]
Galileo Galilei, regarded as the father of modern science.[58]: Vol. 24, No. 1, p. 36
In the sixteenth century, Copernicus formulated a heliocentric model of the solar system unlike the geocentric model of Ptolemy's Almagest. This was based on a theorem that the orbital periods of the planets are longer as their orbs are farther from the centre of motion, which he found not to agree with Ptolemy's model.[59]
Kepler and others challenged the notion that the only function of the eye is perception, and shifted the main focus in optics from the eye to the propagation of light.[60][61]:102 Kepler modelled the eye as a water-filled glass sphere with an aperture in front of it to model the entrance pupil. He found that all the light from a single point of the scene was imaged at a single point at the back of the glass sphere. The optical chain ends on the retina at the back of the eye.[h] Kepler is best known, however, for improving Copernicus' heliocentric model through the discovery of Kepler's laws of planetary motion. Kepler did not reject Aristotelian metaphysics, and described his work as a search for the Harmony of the Spheres.
Galileo made innovative use of experiment and mathematics. However, he became persecuted after Pope Urban VIII blessed Galileo to write about the Copernican system. Galileo had used arguments from the Pope and put them in the voice of the simpleton in the work "Dialogue Concerning the Two Chief World Systems," which greatly offended him.[62]
In Northern Europe, the new technology of the printing press was widely used to publish many arguments, including some that disagreed widely with contemporary ideas of nature. René Descartes and Francis Bacon published philosophical arguments in favor of a new type of non-Aristotelian science. Descartes emphasized individual thought and argued that mathematics rather than geometry should be used in order to study nature. Bacon emphasized the importance of experiment over contemplation. Bacon further questioned the Aristotelian concepts of formal cause and final cause, and promoted the idea that science should study the laws of "simple" natures, such as heat, rather than assuming that there is any specific nature, or "formal cause," of each complex type of thing. This new modern science began to see itself as describing "laws of nature". This updated approach to studies in nature was seen as mechanistic. Bacon also argued that science should aim for the first time at practical inventions for the improvement of all human life.

Age of Enlightenment

Isaac Newton, shown here in a 1689 portrait, made seminal contributions to classical mechanicsgravity, and optics. Newton shares credit with Gottfried Leibniz for the development of calculus.
As a precursor to the Age of Enlightenment, Isaac Newton and Gottfried Wilhelm Leibniz succeeded in developing a new physics, now referred to as classical mechanics, which could be confirmed by experiment and explained using mathematics. Leibniz also incorporated terms from Aristotelian physics, but now being used in a new non-teleological way, for example, "energy" and "potential" (modern versions of Aristotelian "energeia and potentia"). This implied a shift in the view of objects: Where Aristotle had noted that objects have certain innate goals that can be actualized, objects were now regarded as devoid of innate goals. In the style of Francis Bacon, Leibniz assumed that different types of things all work according to the same general laws of nature, with no special formal or final causes for each type of thing. It is during this period that the word "science" gradually became more commonly used to refer to a type of pursuit of a type of knowledge, especially knowledge of nature – coming close in meaning to the old term "natural philosophy."
Science during the Enlightenment was dominated by scientific societies and academies, which had largely replaced universities as centres of scientific research and development. Societies and academies were also the backbone of the maturation of the scientific profession. Another important development was the popularization of science among an increasingly literate population. Philosophes introduced the public to many scientific theories, most notably through the Encyclopédie and the popularization of Newtonianism by Voltaire as well as by Émilie du Châtelet, the French translator of Newton's Principia.
Some historians have marked the 18th century as a drab period in the history of science;[63] however, the century saw significant advancements in the practice of medicinemathematics, and physics; the development of biological taxonomy; a new understanding of magnetism and electricity; and the maturation of chemistry as a discipline, which established the foundations of modern chemistry.
Enlightenment philosophers chose a short history of scientific predecessors – Galileo, Boyle, and Newton principally – as the guides and guarantors of their applications of the singular concept of nature and natural law to every physical and social field of the day. In this respect, the lessons of history and the social structures built upon it could be discarded.[64]

19th century

Early in the 19th century, John Dalton suggested the modern atomic theory, based on Democritus's original idea of individible particles called atoms.
Charles Darwin in 1854, by then working towards publication of On the Origin of Species.
Both John Herschel and William Whewell systematized methodology: the latter coined the term scientist.[65] When Charles Darwin published On the Origin of Species he established evolution as the prevailing explanation of biological complexity. His theory of natural selectionprovided a natural explanation of how species originated, but this only gained wide acceptance a century later.
The laws of conservation of energyconservation of momentum and conservation of masssuggested a highly stable universe where there could be little loss of resources. With the advent of the steam engine and the industrial revolution, there was, however, an increased understanding that all forms of energy as defined by Newton were not equally useful; they did not have the same energy quality. This realization led to the development of the laws of thermodynamics, in which the cumulative energy quality of the universe is seen as constantly declining: the entropy of the universe increases over time.
The electromagnetic theory was also established in the 19th century, and raised new questions which could not easily be answered using Newton's framework. The phenomena that would allow the deconstruction of the atom were discovered in the last decade of the 19th century: the discovery of X-rays inspired the discovery of radioactivity. In the next year came the discovery of the first subatomic particle, the electron.
Combustion and chemical reactions were studied by Michael Faraday and reported in his lectures before the Royal InstitutionThe Chemical History of a Candle, 1861.

20th century

A simulated event in the CMS detector of the Large Hadron Collider, featuring a possible appearance of the Higgs boson.
Einstein's theory of relativity and the development of quantum mechanics led to the replacement of classical mechanics with a new physics which contains two parts that describe different types of events in nature.
In the first half of the century, the development of antibiotics and artificial fertilizer made global human population growth possible. At the same time, the structure of the atom and its nucleus was discovered, leading to the release of "atomic energy" (nuclear power). In addition, the extensive use of technological innovation stimulated by the wars of this century led to revolutions in transportation (automobiles and aircraft), the development of ICBMs, a space race, and a nuclear arms race.
The molecular structure of DNA was discovered in 1953. The discovery of the cosmic microwave background radiation in 1964 led to a rejection of the Steady State theory of the universe in favour of the Big Bang theory of Georges Lemaître.
The development of spaceflight in the second half of the century allowed the first astronomical measurements done on or near other objects in space, including manned landings on the MoonSpace telescopes lead to numerous discoveries in astronomy and cosmology.
Widespread use of integrated circuits in the last quarter of the 20th century combined with communications satellites led to a revolution in information technology and the rise of the global internet and mobile computing, including smartphones. The need for mass systematization of long, intertwined causal chains and large amounts of data led to the rise of the fields of systems theory and computer-assisted scientific modelling, which are partly based on the Aristotelian paradigm.[66]
Harmful environmental issues such as ozone depletionacidificationeutrophication and climate change came to the public's attention in the same period, and caused the onset of environmental science and environmental technology. In a 1967 article, Lynn Townsend White Jr. blamed the ecological crisis on the historical decline of the notion of spirit in nature.[67]

21st century

With the discovery of the Higgs boson in 2012, the last particle predicted by the Standard Model of particle physics was found. In 2015, gravitational waves, predicted by general relativity a century before, were first observed.[68][69]
The Human Genome Project was completed in 2003, determining the sequence of nucleotide base pairs that make up human DNA, and identifying and mapping all of the genes of the human genome.[70] Induced pluripotent stem cells were developed in 2006, a technology allowing adult cells to be transformed into stem cells capable of giving rise to any cell type found in the body, potentially of huge importance to the field of regenerative medicine.[71]

Scientific method

The scientific method seeks to objectively explain the events of nature in a reproducible way.[i] An explanatory thought experiment or hypothesis is put forward as explanation using principles such as parsimony (also known as "Occam's Razor") and are generally expected to seek consilience – fitting well with other accepted facts related to the phenomena.[3] This new explanation is used to make falsifiable predictions that are testable by experiment or observation. The predictions are to be posted before a confirming experiment or observation is sought, as proof that no tampering has occurred. Disproof of a prediction is evidence of progress.[j][k] This is done partly through observation of natural phenomena, but also through experimentation that tries to simulate natural events under controlled conditions as appropriate to the discipline (in the observational sciences, such as astronomy or geology, a predicted observation might take the place of a controlled experiment). Experimentation is especially important in science to help establish causal relationships (to avoid the correlation fallacy).
When a hypothesis proves unsatisfactory, it is either modified or discarded.[72] If the hypothesis survived testing, it may become adopted into the framework of a scientific theory, a logically reasoned, self-consistent model or framework for describing the behavior of certain natural phenomena. A theory typically describes the behavior of much broader sets of phenomena than a hypothesis; commonly, a large number of hypotheses can be logically bound together by a single theory. Thus a theory is a hypothesis explaining various other hypotheses. In that vein, theories are formulated according to most of the same scientific principles as hypotheses. In addition to testing hypotheses, scientists may also generate a model, an attempt to describe or depict the phenomenon in terms of a logical, physical or mathematical representation and to generate new hypotheses that can be tested, based on observable phenomena.[73]
While performing experiments to test hypotheses, scientists may have a preference for one outcome over another, and so it is important to ensure that science as a whole can eliminate this bias.[74][75] This can be achieved by careful experimental design, transparency, and a thorough peer review process of the experimental results as well as any conclusions.[76][77] After the results of an experiment are announced or published, it is normal practice for independent researchers to double-check how the research was performed, and to follow up by performing similar experiments to determine how dependable the results might be.[78] Taken in its entirety, the scientific method allows for highly creative problem solving while minimizing any effects of subjective bias on the part of its users (especially the confirmation bias).[79]

Mathematics and formal sciences

Calculus, the mathematics of continuous change, underpins many of the sciences.
Mathematics is essential to the sciences. One important function of mathematics in science is the role it plays in the expression of scientific models. Observing and collecting measurements, as well as hypothesizing and predicting, often require extensive use of mathematics. For example, arithmeticalgebrageometrytrigonometry, and calculus are all essential to physics. Virtually every branch of mathematics has applications in science, including "pure" areas such as number theory and topology.
Statistical methods, which are mathematical techniques for summarizing and analyzing data, allow scientists to assess the level of reliability and the range of variation in experimental results. Statistical analysis plays a fundamental role in many areas of both the natural sciences and social sciences.
Computational science applies computing power to simulate real-world situations, enabling a better understanding of scientific problems than formal mathematics alone can achieve. According to the Society for Industrial and Applied Mathematics, computation is now as important as theory and experiment in advancing scientific knowledge.[80]
Other formal sciences include information theorysystems theorydecision theory and theoretical linguistics. Such sciences involve the study of well defined abstract systems and depend heavily on mathematics. They do not involve empirical procedures, their results are derived logically from their definitions and are analytic in nature.[81]
Parts of the natural and social sciences which are based on empirical results but which depend heavily on mathematical development include mathematical financemathematical physicsmathematical chemistrymathematical biology and mathematical economics.
Whether mathematics itself is properly classified as science has been a matter of some debate. Some thinkers see mathematicians as scientists, regarding physical experiments as inessential or mathematical proofs as equivalent to experiments. Others do not see mathematics as a science because it does not require an experimental test of its theories and hypotheses. Mathematical theorems and formulas are obtained by logical derivations which presume axiomatic systems, rather than the combination of empirical observation and logical reasoning that has come to be known as the scientific method. In general, mathematics is classified as formal science, while natural and social sciences are classified as empirical sciences.[82]

Scientific community

The scientific community is the group of all interacting scientists. It includes many sub-communities working on particular scientific fields, and within particular institutions; interdisciplinary and cross-institutional activities are also significant.

Branches and fields

The somatosensory system is located throughout our bodies but is integrated in the brain.
Scientific fields are commonly divided into two major groups: natural sciences, which study natural phenomena (including biological life), and social sciences, which study human behavior and societies. These are both empirical sciences, which means their knowledge must be based on observable phenomena and capable of being tested for its validity by other researchers working under the same conditions.[83] There are also related disciplines that are grouped into interdisciplinary applied sciences, such as engineering and medicine. Within these categories are specialized scientific fields that can include parts of other scientific disciplines but often possess their own nomenclature and expertise.[84]
Mathematics, which is classified as a formal science,[85][86] has both similarities and differences with the empirical sciences (the natural and social sciences). It is similar to empirical sciences in that it involves an objective, careful and systematic study of an area of knowledge; it is different because of its method of verifying its knowledge, using a priori rather than empirical methods.[87] The formal sciences, which also include statistics and logic, are vital to the empirical sciences. Major advances in formal science have often led to major advances in the empirical sciences. The formal sciences are essential in the formation of hypothesestheories, and laws,[88]both in discovering and describing how things work (natural sciences) and how people think and act (social sciences).
Apart from its broad meaning, the word "science" sometimes may specifically refer to fundamental sciences (maths and natural sciences) alone. Science schools or faculties within many institutions are separate from those for medicine or engineering, each of which is an applied science.

Institutions

Learned societies for the communication and promotion of scientific thought and experimentation have existed since the Renaissance period.[89] The oldest surviving institution is the Italian Accademia dei Lincei which was established in 1603.[90]The respective National Academies of Science are distinguished institutions that exist in a number of countries, beginning with the British Royal Society in 1660[91] and the French Académie des Sciences in 1666.[92]
International scientific organizations, such as the International Council for Science, have since been formed to promote cooperation between the scientific communities of different nations. Many governments have dedicated agencies to support scientific research. Prominent scientific organizations include the National Science Foundation in the U.S., the National Scientific and Technical Research Council in Argentina, CSIRO in Australia, Centre national de la recherche scientifique in France, the Max Planck Society and Deutsche Forschungsgemeinschaft in Germany, and CSIC in Spain.

Literature

An enormous range of scientific literature is published.[93] Scientific journals communicate and document the results of research carried out in universities and various other research institutions, serving as an archival record of science. The first scientific journals, Journal des Sçavans followed by the Philosophical Transactions, began publication in 1665. Since that time the total number of active periodicals has steadily increased. In 1981, one estimate for the number of scientific and technical journals in publication was 11,500.[94] The United States National Library of Medicine currently indexes 5,516 journals that contain articles on topics related to the life sciences. Although the journals are in 39 languages, 91 percent of the indexed articles are published in English.[95]
Most scientific journals cover a single scientific field and publish the research within that field; the research is normally expressed in the form of a scientific paper. Science has become so pervasive in modern societies that it is generally considered necessary to communicate the achievements, news, and ambitions of scientists to a wider populace.
Science magazines such as New ScientistScience & Vie, and Scientific American cater to the needs of a much wider readership and provide a non-technical summary of popular areas of research, including notable discoveries and advances in certain fields of research. Science books engage the interest of many more people. Tangentially, the science fiction genre, primarily fantastic in nature, engages the public imagination and transmits the ideas, if not the methods, of science.
Recent efforts to intensify or develop links between science and non-scientific disciplines such as literature or more specifically, poetry, include the Creative Writing Science resource developed through the Royal Literary Fund.[96]

Science and society

Women in science

Marie Curie was the first person to be awarded two Nobel PrizesPhysicsin 1903 and Chemistry in 1911.[97]
Science has historically been a male-dominated field, with some notable exceptions.[l]Women faced considerable discrimination in science, much as they did in other areas of male-dominated societies, such as frequently being passed over for job opportunities and denied credit for their work.[m] For example, Christine Ladd (1847–1930) was able to enter a PhD program as "C. Ladd"; Christine "Kitty" Ladd completed the requirements in 1882, but was awarded her degree only in 1926, after a career which spanned the algebra of logic (see truth table), color vision, and psychology. Her work preceded notable researchers like Ludwig Wittgenstein and Charles Sanders Peirce. The achievements of women in science have been attributed to their defiance of their traditional role as laborers within the domestic sphere.[98]
In the late 20th century, active recruitment of women and elimination of institutional discrimination on the basis of sex greatly increased the number of women scientists, but large gender disparities remain in some fields; over half of new biologists are female, while 80% of PhDs in physics are given to men.[citation needed] Feminists claim this is the result of culture rather than an innate difference between the sexes, and some experiments have shown that parents challenge and explain more to boys than girls, asking them to reflect more deeply and logically.[99]: 258–61. In the early part of the 21st century, in America, women earned 50.3% bachelor's degrees, 45.6% master's degrees, and 40.7% of PhDs in science and engineering fields with women earning more than half of the degrees in three fields: Psychology (about 70%), Social Sciences (about 50%), and Biology (about 50-60%). However, when it comes to the Physical Sciences, Geosciences, Math, Engineering, and Computer Science, women earned less than half the degrees.[100] However, lifestyle choice also plays a major role in female engagement in science; women with young children are 28% less likely to take tenure-track positions due to work-life balanc concerned about the well-being of its citizens, science policy's goal is to consider how science and technology can best serve the public.
State policy has influenced the funding of public works (such as the civil engineering works in hydraulic engineering of Sunshu Ao (孫叔敖 7th c. BCE), Ximen Bao (西門豹 5th c.BCE), and Shi Chi (4th c. BCE) ) and science for thousands of years. These works date at least from the time of the Mohists, who inspired the study of logic during the period of the Hundred Schools of Thought, and the study of defensive fortifications (such as the Great Wall of China, which took 2000 years to complete) during the Warring States period in China. In Great Britain, governmental approval of the Royal Society in the 17th century recognized a scientific community which exists to this day. The professionalization of science, begun in the 19th century, was partly enabled by the creation of scientific organizations such as the National Academy of Sciences, the Kaiser Wilhelm Institute, and state funding of universities of their respective nations. Public policy can directly affect the funding of capital equipment and intellectual infrastructure for industrial research by providing tax incentives to those organizations that fund research. Vannevar Bush, director of the Office of Scientific Research and Development for the United States government, the forerunner of the National Science Foundation, wrote in July 1945 that "Science is a proper concern of government."[103]
Science and technology research is often funded through a competitive process in which potential research projects are evaluated and only the most promising receive funding. Such processes, which are run by government, corporations, or foundations, allocate scarce funds. Total research funding in most developed countries is between 1.5% and 3% of GDP.[104]In the OECD, around two-thirds of research and development in scientific and technical fields is carried out by industry, and 20% and 10% respectively by universities and government. The government funding proportion in certain industries is higher, and it dominates research in social science and humanities. Similarly, with some exceptions (e.g. biotechnology) government provides the bulk of the funds for basic scientific research. In commercial research and development, all but the most research-oriented corporations focus more heavily on near-term commercialisation possibilities rather than "blue-sky" ideas or technologies (such as nuclear fusion).

Media perspectives

"Science, however, is not done by popular vote. Science is not done by consensus. Consensus is the stuff of politics; debate is the stuff of science. Science is never settled."— Dr. Peter L. Ward, United States Geological Survey as research geophysicist, branch chief, and program manager[105]
The mass media face a number of pressures that can prevent them from accurately depicting competing scientific claims in terms of their credibility within the scientific community as a whole. Determining how much weight to give different sides in a scientific debate may require considerable expertise regarding the matter.[106] Few journalists have real scientific knowledge, and even beat reporters who know a great deal about certain scientific issues may be ignorant about other scientific issues that they are suddenly asked to cover.[107][108]


Comments

Popular posts from this blog

early modern science

Mitosis and meiosis detail